# | uttid | text | reference |
gpt_yt3_es_noisefeats
basket_config_path: quality/tts/tortoise-baskets/en_es_mapping_1000.json data_meta: null exp_name: gpt_yt3_es_noisefeats lang: es meta: basket_generation_config: basket_lang: es basket_path: quality/tts/tortoise-baskets/en_es_mapping_1000.json batch_size: 2 gpus: 1 inference: diff_steps: 400 exp: /mount/s3/tts-binary-data-nb/eg/exp/gpt_yt3_es_noisefeats/ gpt_generate_args: do_sample: true num_return_sequences: 50 override_conditioning_features: c50: 0.0 pitch_std: 100.0 snr: 100.0 reranking_options: mode: MBR top_k: 1 vocoder: univnet num_workers: 1 output_dir: en_es_mapping/gpt_yt3_es_noisefeats__2024-05-27_14-44-24 ticket: QUALITY-41 basket_generation_git_hash: 71a8145b02c397bad9d539a5e9de4f14ce1bbd77 model_data_type: tts-cloning ticket: QUALITY-41 version: 2024-05-27_14-44-24 |
yt3es_noise_feats_augs
basket_config_path: quality/tts/tortoise-baskets/en_es_mapping_1000.json data_meta: null exp_name: yt3es_noise_feats_augs lang: es meta: basket_generation_config: basket_lang: es basket_path: quality/tts/tortoise-baskets/en_es_mapping_1000.json batch_size: 4 gpus: 1 inference: diff_steps: 400 exp: /mount/s3/tts-binary-data-nb/eg/exp/yt3es_noise_feats_augs/ gpt_generate_args: do_sample: true num_return_sequences: 50 override_conditioning_features: c50: 0.0 pitch_std: 100.0 snr: 100.0 reranking_options: mode: MBR top_k: 1 vocoder: univnet num_workers: 1 output_dir: en_es_mapping/yt3es_noise_feats_augs__2024-05-27_14-31-10 ticket: QUALITY-41 basket_generation_git_hash: 71a8145b02c397bad9d539a5e9de4f14ce1bbd77 model_data_type: tts-cloning ticket: QUALITY-41 version: 2024-05-27_14-31-10 |
yt3es_noise_feats_augs100
basket_config_path: quality/tts/tortoise-baskets/en_es_mapping_1000.json data_meta: null exp_name: yt3es_noise_feats_augs100 lang: es meta: basket_generation_config: basket_lang: es basket_path: quality/tts/tortoise-baskets/en_es_mapping_1000.json batch_size: 4 gpus: 1 inference: diff_steps: 400 exp: /mount/s3/tts-binary-data-nb/eg/exp/yt3es_noise_feats_augs100/ gpt_generate_args: do_sample: true num_return_sequences: 50 override_conditioning_features: c50: 0.0 pitch_std: 100.0 snr: 100.0 reranking_options: mode: MBR top_k: 1 vocoder: univnet num_workers: 1 output_dir: en_es_mapping/yt3es_noise_feats_augs100__2024-05-27_14-31-12 ticket: QUALITY-41 basket_generation_git_hash: 71a8145b02c397bad9d539a5e9de4f14ce1bbd77 model_data_type: tts-cloning ticket: QUALITY-41 version: 2024-05-27_14-31-12 |
---|---|---|---|---|---|---|
880
|
vUzxViPfNcY_001/8bfaf370
|
Voy a romper eso con mis pulgares... a separarlo porque es muy grande.
|
||||
881
|
N1gZm6lMgYE_001/5108f76d
|
Y como practicantes, tenemos muy pocas experiencias.
|
||||
882
|
BoAU6fkv0dg_001/b1ff70dc
|
Así que ahora los tengo aproximadamente en la posición.
|
||||
883
|
NUBZv4zMOwg_001/b2e5f34f
|
No cuestiona su fe ni su comprensión.
|
||||
884
|
y6jOzSdTtjI_002/b17eba41
|
Mucha gente realmente quiere que los hagamos en el canal de YouTube.
|
||||
885
|
MpJ883uplYU_001/ebde27ed
|
No se necesita niñera, ni planificación con mucha anticipación ni en múltiples calendarios.
|
||||
886
|
ooXuYlYu6pU_001/3b83b24c
|
Abigail obedece y le da la oportunidad.
|
||||
887
|
hXMquh9YQUM_001/1995d58f
|
Los jardines digitales son un modelo que podría resultar útil en diversos contextos.
|
||||
888
|
N1gZm6lMgYE_001/69cde40e
|
Entonces no sabes hacia dónde va esa arteria principal.
|
||||
889
|
Je8YcXQhaT4_001/62a1525f
|
Ármate de conocimiento.
|